Discrete models

Different kinds of discrete representations/models

More difficult to structure that the classical mathematical models.

Often concerned with modelling different kinds of information.

Some model types mostly studied within computer science, also
some overlap with mathematics.

Basic discrete representations/model types

|+

L2,b,)

Model or problem!?

A graph can model
things, but it is not a
problem

s theee a patl,

o A W T

In a problem you
have also added a
question!

Other discrete representations/model types

General discrete models

of representation Standard discrete
(optimization) problems

Models of computation

Different specialised
models

Many standard problems are known and well documented

MINIMUM VERTEX COVER MINIMUM TRAVELING SALESPERSON

e INSTANCE: Set C of m cities, distances d(c,-,c,-) € N for each pair of cities ¢i,¢j € C.
MINIMUM DOMINATING SET

e SOLUTION: A tour of C, i.¢., a permutation 7 : [1..m] — [1..m] .
MAXIMUM DOMATIC PARTITION

m—1

MINIMUM EDGE DOMINATING SET * MEASURE: The length of the tour, i.c., d ({¢x(m), ¢x(1)}) + Z d ({ex(iys exiirn)}) -

=1

MINIMUM INDEPENDENT DOMINATING SET

e Bad News: NPO-complete [388].
MINIMUM GRAPH COLORING

e Comment: The corresponding maximization problem (finding the tour of maximum length) is approximable within 4/3 if the distance function is symmetric [434]

MINIMUM COLOR SUM (within (33 + ¢)/25 by a randomized algorithm [240]) and 63/38 if it is asymmetric [337].

e Garey and Johnson: ND22
MAXIMUM ACHROMATIC NUMBER

MINIMUM EDGE COLORING MINIMUM VERTEX COVER

e INSTANCE: Graph G = .
MINIMUM FEEDBACK VERTEX SET ph G = (V, E)

e SOLUTION: A vertex cover for G, i.¢.,asubset V' C V such that, for each edge (u,v) € E, atleast one of « and v belongs to V.

MINIMUM FEEDBACK ARC SET e MEASURE: Cardinality of the vertex cover, i.e., |V' |

MINIMUM MAXIMAL MATCHING

o Good News: Approximable within 2 — 2818 1V1 [380] and [62] and 2 — 2—|Jrl'“‘“ Vi1 - o(1)) [232].
MAXIMUM TRIANGLE PACKING 2log|V] In|V (0())

Bad News: Not approximable within 1.1666 [242].
e Comment: The good news hold also for the weighted version [62,232], in which each vertex has a nonnegative weight and the

MAXIMUM H-MATCHING objective is to minimize the total weight of the vertex cover. Admits a PTAS for planar graphs [53] and for unit disk graphs [264],
even in the weighted case. The case when degrees are bounded by A > 3 is APX-complete [393] and [9], for A =5 not

MINIMUM BOTTLENECK PATH MATCHING approximable within 1.0029 [76], and not approximable within 1.1666 for a sufficiently large A [118]. For A =3 itis

approximable within 7/6 [75], and for general A within 2 — (1 — o(1)2loglog A/log A [232]. Approximable within 3/2 for 6-

MINIMUM CLIQUE PARTITION claw-free graphs (where no independent set of size 6 exists in any neighbour set to any vertex) [222], and within

2 — (1 —o(1))2loglog p/ logp for p+I-claw-free graphs [232]. Variation in which | E| = |V|? is APX-complete [118], and is

MINIMUM K-CAPACITATED TREE PARTITION approximable within 2 — 4 /(13 + 4¢) [382]. Approximable within 2/(1 + &) if every vertex has degree at least £|V| [297] and

[294]. When generalized to k-uniform hypergraphs, the problem is equivalent to MINIMUM SET COVER with fixed number & of
MAXIMUM BALANCED CONNECTED PARTITION occurrences of each elements. Approximable within k£ — (k — 1)InIn|V|/In|V| and &k — (k(k — 1)InlnA)/In A , for large

values of n and A [232]. If the vertex cover is required to induce a connected graph, the problem is approximable within 2 [429].
MINIMUM CLIQUE COVER If the graph is edge-weighted, the solution is a closed walk whose vertices form a vertex cover, and the objective is to minimize the

sum of the edges in the cycle, the problem is approximable within 5.5 [27]. The constrained variation in which the input is
extended with a positive integer k and a subset S of V. and the problem is to find the vertex cover of size k that contains the lareest

http://www.nada.kth.se/~viggo/wwwcompendium/node10.html
http://www.nada.kth.se/~viggo/wwwcompendium/node11.html
http://www.nada.kth.se/~viggo/wwwcompendium/node12.html
http://www.nada.kth.se/~viggo/wwwcompendium/node13.html
http://www.nada.kth.se/~viggo/wwwcompendium/node14.html
http://www.nada.kth.se/~viggo/wwwcompendium/node15.html
http://www.nada.kth.se/~viggo/wwwcompendium/node16.html
http://www.nada.kth.se/~viggo/wwwcompendium/node17.html
http://www.nada.kth.se/~viggo/wwwcompendium/node18.html
http://www.nada.kth.se/~viggo/wwwcompendium/node19.html
http://www.nada.kth.se/~viggo/wwwcompendium/node20.html
http://www.nada.kth.se/~viggo/wwwcompendium/node21.html
http://www.nada.kth.se/~viggo/wwwcompendium/node22.html
http://www.nada.kth.se/~viggo/wwwcompendium/node23.html
http://www.nada.kth.se/~viggo/wwwcompendium/node24.html
http://www.nada.kth.se/~viggo/wwwcompendium/node25.html
http://www.nada.kth.se/~viggo/wwwcompendium/node26.html
http://www.nada.kth.se/~viggo/wwwcompendium/node27.html
http://www.nada.kth.se/~viggo/wwwcompendium/node28.html

Two ways to solve problems

Prob(ew\ —5 standard Prob(ew\ —— answer

P”’B(‘M > onsWwesr—

Two ways to solve problems

Prob(ew\ — standard problewvs —— answer

you have to standard algorithm
model/translate! often available!
Pro blewa > anSwer—

create your own
algorithm

” Model as the problem...”

|. First be clear about what problem you have.

2. Then think about how you can solve it by
using a subroutine for another problem.

This is not about solving the problem yourself. Just
translate it!

Models, algorithms and software

A good software system has a good
model (or problem) at its core, and
powerful algorithms for that model.

interface

The model itself determines to a
considerable extent what you can do
with the system.

algorithms

If you want to understand or design a

software system this is how you should
think!

Often when a computer program is
difficult to understand or use, it is
word processing, databases, graphics because the underlying model is messy

programs, communication, security, and not mathematically clean and
gontrol, Al, decision support, games, precise.
image and sound formats, ...

(To avoid misunderstanding: depending on the application, a software system can be based on any mathematical
model, eg. splines, optimization model, probability distribution etc.,and not only discrete models.)

AJT AN I NWOGALAS TUUIA

_-‘
&/
\f‘..

Bosendorfer mic'd for sampling

Example of changing underlying models: electronic pianos

1960’s: simple waveform and decay synthesis

1980’s: sampling synthesis

2000- : physical modelling

£ S

Bosendorfer mic'd for sampling

Vienna Symmphonic Library

something about algorithms and
algorithm design

Complexity of algorithms

Si1 24

The Shortest Path Problem

...G‘L >

[Rambérgs®

e At

al t feea- g
F]skehar&gsmotet g\dr‘

aren - Vasttrahi

4 > € = O iaswvastafiksesseAr pinerarenfremageo=02005170 O [E3 - Q.

—— N
S vasttrafik

Startsida Attress Trafikidget Prisor & Kort Om VEstirafik Aktuellt Montakts css Mina sidor

Attresa

Reseplaneraren

7, GOTEEORS (Milplety) - Cputomut. COTEBONG (kilputs] raaceq 16 staser

Aoy 1780
Ak 1618
dug 1624 Moz Tywered
ek 0

Wabbguiden

polynomial growth

The Travelling Salesperson Problem

exponential growth

|0 0,001 s
20 | s

30 |8 min
40 |3 days
50 36 years
60 36600 years

The Travelling Salesperson Problem

exponential growth

10 0,001 s

20 | s

30 |8 min

40 |3 days

50 36 years
no known polynomial algorithm! 60 36600 years

TSP

Sweden Tour
24,978 Cities

o §) 10C Kéometers
0 L 100 Miles
Lot Contsame’ Lorw Franseton. o8 EMEN

!
Norwegtan | Sea

Klaipeda

Many of the known problems
are difficult problems for which
no polynomial algorithm is
known (so called NP-complete
or NP-hard problems).

But even for relatively large
instances of such problems the
situation is far from hopeless,
when sophisticated algorithms
are used.This is one of the
largest TSP instances currently
solved. The solution is proven
to be optimal.

See http://www.tsp.gatech.edu/
sweden/index.html

Standard discrete problems

Polynomial: searching and sorting, shortest path, minimum spanning
tree, ...

Exponential (really NP-hard™®): TSP, knapsack, ...

With exponential problems you may have to compromise with quality
to solve large problem instances.

* this means that only exponential algorithms are known for solving
the problem to optimality. Probably no polynomial algorithms exist.

General algorithm design

Be sure to define the problem clearly before thinking about algorithms.
Any special properties of your problem could be useful when solving it.

Then:

* See if you can translate it (or a part of it) into a problem that is well
known

* For the non-standard parts, use standard algorithm design
techniques

Main discrete algorithm design techniques

Divide and conquer. Split the problem, solve the subproblems,
merge.

Dynamic programming. Solve a sequence of subproblems until
you get to your problem.

Combinatorial search. Test all possibilites or a subset of them. Use
branch and bound to speed up.

Greedy algorithm/heuristic. Do what seems best in every step. Is
often heuristic.

Local search. Take a solution and repeatedly improve it by making
small changes. Is often heuristic.

Solving the directed shortest path problem with
dynamic programming

Traverse nodes from left to right and mark with
distance from origin.

Circumvents the combinatorial explosion!

Combinatorial search: branch & bound

Bowed 10
/\\
1,2 1,3 1,4 1,3
Bouad 31 Bowsd Bound 29 Bowad 4]
s ‘/\1- la/\l 12
1,3, 13, 1,38 1,4, 2 1,4,3 1,4, 5

1,3,2,4 1,3,2,5 1,4,5,2 1,4,5,3
.’."2.‘."' -l.’.z"g"l .lo ’0 - L) *
Value 37 Value 31 V‘.hzﬁ&' lv‘&’l,‘z.‘

Local search for the TSP

from Wikipedia

How solve in practice: TSP examples...

A lot of mathematical engineering!

Which algorithm design technique!?

What algorithm design technique you should use depends on:

* Do you think the problem might be polynomial, then go for no
less than a perfect solution (main alt:: D&C,DP, greedy)

e If you think the problem is exponential, you will probably have to
accept some compromise:

e Use an exponential algorithm and avoid solving large problems.
If you tune it, maybe you will be able to solve your problem.

e Use a heuristic that is faster but may give lower quality

e If you have no idea try all methods (in several ways) and then
analyze your algorithms!

