
Discrete models

Different kinds of discrete representations/models

More difficult to structure that the classical mathematical models.

Often concerned with modelling different kinds of information.

Some model types mostly studied within computer science, also
some overlap with mathematics.

Basic discrete representations/model types

integers, sets, sequences,
trees, graphs, networks, …

Model or problem?

A graph can model
things, but it is not a
problem

In a problem you
have also added a
question!

The common language is sometimes a
bit confused…

Other discrete representations/model types

Models of computation
(combinatorial and sequential networks,
Turing machine, lambda calculus...
Programming languages)

General discrete models
of representation
(relation, grammar, finite
automaton, logic)

Standard discrete
(optimization) problems
(shortest path, minimum
spanning tree, knapsack,
LP/ILP …)

There are systems and algorithms for
all these model types and problems!

Different specialised
models
(e.g. rule based
expert system,
modelling languages,
file formats,…)

Many standard problems are known and well documented

◦ MINIMUM VERTEX COVER

◦ MINIMUM DOMINATING SET

◦ MAXIMUM DOMATIC PARTITION

◦ MINIMUM EDGE DOMINATING SET

◦ MINIMUM INDEPENDENT DOMINATING SET

◦ MINIMUM GRAPH COLORING

◦ MINIMUM COLOR SUM

◦ MAXIMUM ACHROMATIC NUMBER

◦ MINIMUM EDGE COLORING

◦ MINIMUM FEEDBACK VERTEX SET

◦ MINIMUM FEEDBACK ARC SET

◦ MINIMUM MAXIMAL MATCHING

◦ MAXIMUM TRIANGLE PACKING

◦ MAXIMUM H-MATCHING

◦ MINIMUM BOTTLENECK PATH MATCHING

◦ MINIMUM CLIQUE PARTITION

◦ MINIMUM K-CAPACITATED TREE PARTITION

◦ MAXIMUM BALANCED CONNECTED PARTITION

◦ MINIMUM CLIQUE COVER

http://www.nada.kth.se/~viggo/wwwcompendium/node10.html
http://www.nada.kth.se/~viggo/wwwcompendium/node11.html
http://www.nada.kth.se/~viggo/wwwcompendium/node12.html
http://www.nada.kth.se/~viggo/wwwcompendium/node13.html
http://www.nada.kth.se/~viggo/wwwcompendium/node14.html
http://www.nada.kth.se/~viggo/wwwcompendium/node15.html
http://www.nada.kth.se/~viggo/wwwcompendium/node16.html
http://www.nada.kth.se/~viggo/wwwcompendium/node17.html
http://www.nada.kth.se/~viggo/wwwcompendium/node18.html
http://www.nada.kth.se/~viggo/wwwcompendium/node19.html
http://www.nada.kth.se/~viggo/wwwcompendium/node20.html
http://www.nada.kth.se/~viggo/wwwcompendium/node21.html
http://www.nada.kth.se/~viggo/wwwcompendium/node22.html
http://www.nada.kth.se/~viggo/wwwcompendium/node23.html
http://www.nada.kth.se/~viggo/wwwcompendium/node24.html
http://www.nada.kth.se/~viggo/wwwcompendium/node25.html
http://www.nada.kth.se/~viggo/wwwcompendium/node26.html
http://www.nada.kth.se/~viggo/wwwcompendium/node27.html
http://www.nada.kth.se/~viggo/wwwcompendium/node28.html

Two ways to solve problems

Two ways to solve problems

create your own
algorithm

standard algorithm
often available!

you have to
model/translate!

main approach
in this course!

(take algorithms
course!)

” Model as the problem…”

1. First be clear about what problem you have.

2. Then think about how you can solve it by
using a subroutine for another problem.

This is not about solving the problem yourself. Just
translate it!

Models, algorithms and software

model

algorithms

interface

A good software system has a good
model (or problem) at its core, and
powerful algorithms for that model.

The model itself determines to a
considerable extent what you can do
with the system.

If you want to understand or design a
software system this is how you should
think!

Often when a computer program is
difficult to understand or use, it is
because the underlying model is messy
and not mathematically clean and
precise.

word processing, databases, graphics
programs, communication, security,
control, AI, decision support, games,
image and sound formats, …

(To avoid misunderstanding: depending on the application, a software system can be based on any mathematical
model, eg. splines, optimization model, probability distribution etc., and not only discrete models.)

Example of changing underlying models: electronic pianos

1960’s: simple waveform and decay synthesis

1980’s: sampling synthesis

2000- : physical modelling

something about algorithms and
algorithm design

Complexity of algorithms

The Shortest Path Problem

n c n2

10 0,001 s

20 0,004 s

30 0,009 s

40 0,016 s

50 0,025 s

60 0,036 s

polynomial growth

The Travelling Salesperson Problem

n c 2n

10 0,001 s

20 1 s

30 18 min

40 13 days

50 36 years

60 36600 years

exponential growth

The Travelling Salesperson Problem

n c 2n

10 0,001 s

20 1 s

30 18 min

40 13 days

50 36 years

60 36600 years

exponential growth

no known polynomial algorithm!

Many of the known problems
are difficult problems for which
no polynomial algorithm is
known (so called NP-complete
or NP-hard problems).

But even for relatively large
instances of such problems the
situation is far from hopeless,
when sophisticated algorithms
are used. This is one of the
largest TSP instances currently
solved. The solution is proven
to be optimal.

See http://www.tsp.gatech.edu/
sweden/index.html

Standard discrete problems

 Polynomial: searching and sorting, shortest path, minimum spanning
tree, …

Exponential (really NP-hard*): TSP, knapsack, …

With exponential problems you may have to compromise with quality
to solve large problem instances.

* this means that only exponential algorithms are known for solving
the problem to optimality. Probably no polynomial algorithms exist.

General algorithm design

Be sure to define the problem clearly before thinking about algorithms.
Any special properties of your problem could be useful when solving it.

Then:

• See if you can translate it (or a part of it) into a problem that is well
known

• For the non-standard parts, use standard algorithm design
techniques

• Invent a completely new kind of algorithm...

Main discrete algorithm design techniques

• Divide and conquer. Split the problem, solve the subproblems,
merge.

• Dynamic programming. Solve a sequence of subproblems until
you get to your problem.

• Combinatorial search. Test all possibilites or a subset of them. Use
branch and bound to speed up.

• Greedy algorithm/heuristic. Do what seems best in every step. Is
often heuristic.

• Local search. Take a solution and repeatedly improve it by making
small changes. Is often heuristic.

• …

Solving the directed shortest path problem with
dynamic programming

Traverse nodes from left to right and mark with
distance from origin.

Circumvents the combinatorial explosion!

Combinatorial search: branch & bound

from Wikipedia

Local search for the TSP

How solve in practice: TSP examples...

A lot of mathematical engineering!

Which algorithm design technique?

What algorithm design technique you should use depends on:

• Do you think the problem might be polynomial, then go for no
less than a perfect solution (main alt:: D&C,DP, greedy)

• If you think the problem is exponential, you will probably have to
accept some compromise:

• Use an exponential algorithm and avoid solving large problems.
If you tune it, maybe you will be able to solve your problem.

• Use a heuristic that is faster but may give lower quality

• If you have no idea try all methods (in several ways) and then
analyze your algorithms!

